The Risk Limit of Bayesian Audits

Kellie Ottoboni E-VOTE-ID 2018 October 2, 2018

University of California, Berkeley DEPARTMENT OF STATISTICS

Why audit?

Provide assurance that reported outcomes are correct by examining some or all of a voter-verifiable paper record.

Why audit?

Provide assurance that reported outcomes are correct by examining some or all of a voter-verifiable record.

32 states have some sort of law mandating post-election audits.

- Which contests?
- How are samples of ballots drawn?
- Is vote-by-mail included?
- Are audit results binding?

Statistical check that tabulation errors would not change the electoral outcome.

Risk limit: chance of failing to correct a wrong outcome

RLAs are hypothesis tests.

H_0 : The reported winner is **wrong**.

RLAs are hard.

• Multiple pools of ballots

RLAs are hard.

- Multiple pools of ballots
- Heterogeneous voting systems

ballot comparison ballot polling no audit

RLAs are hard.

- Multiple pools of ballots
- Heterogeneous voting systems
- Complex social choice functions

Bayesian Audits (Rivest and Shen, 2012)

- 1. Model voter preferences as random with a prior distribution.
- Sample infinitely many elections (collections of voter preferences) from the prior.

1. Model voter preferences as random with a prior distribution.

A:500

B:400

C:100

- Sample infinitely many elections (collections of voter preferences) from the prior.
- 3. Audit each hypothetical election and discard those for which the audit sample differs from observed.

A:500

B:400

C:100

- Sample infinitely many elections (collections of voter preferences) from the prior.
- 3. Audit each hypothetical election and discard those for which the audit sample differs from observed.

A:500

B:400

C:100

- Sample infinitely many elections (collections of voter preferences) from the prior.
- 3. Audit each hypothetical election and discard those for which the audit sample differs from observed.
- 4. Calculate the fraction of elections whose winner differs from the reported winner in the actual election.

Posterior probability = 1/2

1. Assume the reported outcome is wrong.

1. Assume the reported outcome is wrong. Consider all possible ways.

A · 400	A · 400	A · 450	A · 475
A.499	A.400	A.400	A.4/5
B : 501	B : 500	B:475	B : 500
C : 0	C : 100	C : 75	C : 25

- 1. Assume the reported outcome is wrong. Consider all possible ways.
- For each collection of voter preferences, find the probability that the audit will stop without a full hand count.

A : 499 B : 501 C : 0	A : 400 B : 500 C : 100	A : 450 B : 475 C : 75	A : 475 B : 500 C : 25
	Ļ		Ļ
P=0	P=0.20	P=0.10	P=0.05

- 1. Assume the reported outcome is wrong. Consider all possible ways.
- For each collection of voter preferences, find the probability that the audit will stop without a full hand count.
- 3. Risk is the maximum.

Risk = 0.20

- Fixed, unobserved voter preferences vs a prior distribution
- Worst case chance vs average over hypothetical elections
- Bayesian audits don't require computing P-values

When is a Bayesian audit risk-limiting?

Not always.

Risk <= Probability that the audit stops, assuming a tie.

Run 10,000 Bayesian ballot-polling audits and record the posterior probability when the audit stops.

Not always.

Risk <= Probability that the audit stops, assuming a tie.

Run 1000 Bayesian ballot-polling audits and record the posterior probability when the audit stops.

Desired risk limit	Empirical risk	Factor
0.001	0.0065	6.5
0.002	0.0141	7
0.005	0.0303	6.1
0.01	0.0575	5.8
0.02	0.1052	5.3
0.05	0.2255	4.5
0.1	0.3837	3.8

Decision theory

- \bigcirc : Set of all possible voter preferences
- \mathcal{D} : Set of all possible audit rules
- $R(heta,\delta)$: Risk of using the audit rule δ when voter preferences are heta

Decision theory

- ⊖ : Set of all possible voter preferences
- \mathcal{D} : Set of all possible audit rules
- $R(heta,\delta)$: Risk of using the audit rule δ when voter preferences are heta

$$\inf_{\delta \in \mathcal{D}} \sup_{\theta \in \Theta} R(\theta, \delta) = \inf_{\delta \in \mathcal{D}} \int_{\theta \in \Theta} R(\theta, \delta) d\pi(\theta)$$
Risk from an RLA
Average risk over least favorable prior

A way forward?

• Identify least favorable priors -- usually not an "uninformative" prior

• Restrict to audit rules that give the desired risk limit

• Special case: the BRAVO RLA (Lindeman et al, 2012) is equivalent to a Bayesian audit with a certain prior (Vora, unpublished)

Thanks!

kellieotto@berkeley.edu

www.kellieottoboni.com

@kellieotto